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Abstract

This paper deals with electromagnetic radiation generated
by relativistic particles in arbitrary planar magnetic field
(in a wiggler or undulator for example). Magnetic system
producing this field is assumed to be planar and to consist
of permanent magnets. It is shown that there is a special
rotations for vectors of magnetization in such magnetic
system: while magnetic field is varying but the spectrum
of spontaneous radiation generated by relativistic
particles remains the same. This property of radiation can
be used in design of the new undulators and wigglers.

1 INTRODUCTION
Nowadays, permanent magnets are widely used in wiggler
and undulator designs. Only permanent magnets are used
in pure permanent magnet (PPM) wigglers [1].
Sometimes unusual undulator designs are used, especially
for the microundulators [2-5]. To enhance the FEL gain,
the non-standard scheme was chosen also for the PPM
wiggler [6,7], i.e. with the magnetization vectors parallel
and anti-parallel to the wiggler axis. That is why it is very
important to investigate the general properties of the
planar PPM undulators/wigglers and the electromagnetic
radiation generated by relativistic electron beam in such
systems. In particular the Rotation Theorem is well
known [8]: if at each point of a PPM system all easy axis
are rotated simultaneously by the angleθ , while the
geometry remains the same, then all magnetic fields rotate
by the opposite angle −θ  without the change in
amplitude.
   This paper also deals with another general property of
any planar PPM wiggler/undulator. It is shown that if all
easy axis of the upper part of PPM undulator are rotated
by the angle θ , and at the same time all easy axis of the
bottom part of PPM undulator are rotated by the opposite
angle −θ  the shape of magnetic field clearly varies, but
the module of it’s Fourier transform remains constant.

2 FOURIER TRANSFORM INVARIANCE
PROPERTY FOR MAGNETIC FIELD

Let us consider a PPM system that is infinitely wide and
homogeneous along the X-axis (horizontal axis) with
___________________
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magnetization 
�
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produced by such a system is given by [9]:
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Figure 1: Rotation of easy axis in planar PPM wiggler:
solid arrows show the initial magnetization, dashed
arrows show the magnetization after rotation. Standard
period of PPM wiggler is used as an example.

   Let us consider the vertical magnetic field Fourier
transform in the wiggler median plane ( � = � ):
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Substituting (1) into (2) and making some analytical
calculations yields the relationship [10]:
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   Let us rotate the easy axis at each point of upper part of
the PPM system � �′ >� �  by the angleθ :

′ = −� � � � � � � � �
� � �
� � � � � ����� � � � ����� �θ θ ,

′ = +� � � � � � � � �
� � �
� � � � � ����� � � � ����� �θ θ .

As a result we will find that at � �′ >� �  and � > �  the

function �  will obtain the additional phase factor:
′ = −� � ����� �θ                                                    (5)

The rotation of the easy axis at each point of down part of
the PPM system � �′ <� �  by the angle −θ  is given by:
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′ = +� � � � � � � � �
� � �
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′ = −� � � � � � � � �
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� � � � � � ���� � � � � ���� �θ θ .

It is easy to see that the integral (3) over the bottom part of
PPM system � �′ <� �  will get the same phase factor as

(5). As a result we have at � > � :
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Using the similar calculations, we have at � < � :
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Magnetic field is a real function. It is evident from (6) and
(7), that the complex conjugation of its Fourier transform
is equivalent to replacing �  by − � .

   Eqs. (6) and (7) shows that if all the easy axis at each
point of the upper part of PPM system are rotated by the
angle θ  and at the same time all the easy axis at each
point of the bottom part of PPM system are rotated by the
opposite angle −θ , the module of Fourier transform of
the magnetic field does not change (Fig. 1). But the phase
factors in Fourier transform at � > �  and � < �  are

different. It means that the shape of the magnetic field will
be changed.
   A brief analysis was made in [6] for the different
magnetic fields produced by two different PPM
undulators. Actually the second undulator in [6] could be
derived from the first one by rotation of easy axis by the
angle − π � �  at upper part of this undulator and by the
angle π � �  at its bottom part. Results obtained in [6] are
in excellent agreement with results obtained above in this
chapter.

3 INVARIANCE OF
ELECTROMAGNETIC RADIATION

   Let us consider the spontaneous electromagnetic
radiation, generated by relativistic particle in planar
magnetic fields. At first, let us consider the case of
relatively weak magnetic field. It means that the angle by
which the particle is deflected by the magnetic field is
small in comparison with the quantity �� γ , where γ  is a

reduced energy of relativistic particle. As this takes place,
electromagnetic radiation is dipole-type. It means for
undulators that the undulator deflection parameter is much
smaller than unit. Electromagnetic radiation from the
microundulators (undulators with period less than several
millimeters) is almost dipole-type. Spectral
characteristics of dipole radiation are determined by the
module squared of the Fourier transform of the magnetic
field vertical component [11]. Let us transform the
magnetic system as it was described above in section 2.
Let us rotate the easy axis at each point of the upper part of
PPM system by the angle θ  and at each point of the
bottom part of PPM system by the opposite angle −θ
(Fig. 1). Using results obtained in section 2 and the

property of dipole radiation noted above, we can
conclude, that spectral characteristics of electromagnetic
radiation of relativistic particle remain invariant under
these transformations of PPM magnetic system.
   Let us consider the planar PPM undulator with period �
and infinite length. Integral of the magnetic field over the
undulator period is equal to zero. Radiation wavelength
λ , generated by the harmonic with number �  at the
angle θ  to the undulator axis, is equal to:
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Deflection parameter K for the nonsinusoidal magnetic
field is equal to:
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where β
�
�� �  is a horizontal reduced speed of the

particle. It is clear from the equations of motion that:
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The particle initial conditions were chosen in such a way
that trajectory of the particle is a periodic function. The
Fourier coefficients for the β

�
�� �  function are:
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Since the transverse drift of the particle along one
undulator period is equal to zero, the Fourier coefficient at
� = �  equal to zero, i.e. β

��
�= . Using Parseval

theorem, we obtain:
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   It is easy to show from (10) and (11) that at � ≠ �

Fourier coefficients for the reduced speed and Fourier
coefficients for the undulator magnetic field are
proportional to each other:
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where e is a particle charge, m  is its mass, c is the speed of
light,
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It is easy to obtain the formulae for the undulator magnetic
field Fourier coefficients (14), which are similar to Eqs.
(3), (4). Using (9) - (14), we can prove the following
statement.
    We transform now the planar PPM undulator by the
method described in section 2. Let us rotate the easy axis
at each point of the upper part of PPM undulator by the
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angle θ  and at each point of the bottom part of PPM
undulator by the opposite angle −θ  (Fig. 1). As this takes
place the Fourier coefficients (14) for undulator magnetic
field and the Fourier coefficients (11) for the reduced
speed will get the phase factor. It is evident from (9) and
(12) that the undulator deflection parameter is invariant
under this magnetic system transformation. It means that
the position of undulator radiation harmonic does not shift
also. But at the same time the intensity of undulator
radiation at some harmonic might change, because of
undulator magnetic field shape changes. This problem
calls for further investigations.
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